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Preface

Dear Student
Why is it a good idea to take a science course, and in particular, why is astronomy 
a course worth taking? Many people choose to learn about astronomy because 
they are curious about the universe. Your instructor likely has two basic goals in 
mind for you as you take this course. The first is to understand some basic physi-
cal concepts and how they apply to the universe around us. The second is to think 
like a scientist and learn to use the scientific method not only to answer questions 
in this course but also to make decisions in your life. We have written the fifth 
edition of 21st Century Astronomy with these two goals in mind.

Throughout this book, we emphasize not only the content of astronomy (for 
example, the differences among the planets, the formation of chemical elements) 
but also how we know what we know. The scientific method is a valuable tool that 
you can carry with you and use for the rest of your life. One way we highlight 
the process of science is the Process of Science Figures. In each chapter, we 
have chosen one discovery and provided a visual representation illustrating the 
discovery or a principle of the process of science. In these figures, we try to illus-
trate that science is not a tidy process, and that discoveries are sometimes made 
by different groups, sometimes by accident, but always because people are trying 
to answer a question and show why or how we think something is the way it is.

The most effective way to learn something is to “do” it. Whether playing an in-
strument or a sport or becoming a good cook, reading “how” can only take you so 
far. The same is true of learning astronomy. We have written this book to help you 
“do” as you learn. We have created several tools in every chapter to make reading 
a more active process. At the beginning of each chapter, we have provided a set 
of Learning Goals to guide you as you read. There is a lot of information in every 
chapter, and the Learning Goals should help you focus on the most important 
points. We present a big-picture question in association with the chapter-opening 
figure at the beginning of each chapter. For each of these, we have tried to pose a 
question that is not only relevant to its chapter but also something you may have 
wondered about. We hope that these questions, plus the photographs that accom-
pany them, capture your attention as well as your imagination.

In addition, there are Check Your Understanding questions at the end of 
each chapter section. These questions are designed to be answered quickly if you 
have understood the previous section. The answers are provided in the back of 
the book so you can check your answer and decide if further review is necessary.

As a citizen of the world, you make judgments about science, distinguishing 
between good science and pseudoscience. You use 
these judgments to make decisions in the grocery 
store, pharmacy, car dealership, and voting booth. 
You may base these decisions on the presentation of 
information you receive through the media, which 
is very different from the presentation in class. One 
important skill is the ability to recognize what is 
credible and to question what is not. To help you 
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planetesimals that were too sparsely distributed for large planets to grow. Icy 
planetesimals in the outer Solar System that survived planetary accretion remain 
today as comet nuclei. The frozen, distant dwarf planets Pluto and Eris are espe-
cially large examples of these residents of the outer Solar System.

Many Solar System objects show evidence of cataclysmic impacts that re-
shaped worlds, suggesting that the early Solar System must have been a remark-
ably violent and chaotic place. The dramatic difference in the terrain of the 
northern and southern hemispheres on Mars, for example, has been interpreted 
as the result of one or more colossal collisions. The leading theory for the origin 
of our Moon is that it resulted from the collision of an object with Earth. Mercury 
has a crater on its surface from an impact so devastating that it caused the crust 
to buckle on the opposite side of the planet. In the outer Solar System, one of 
Saturn’s moons,  Mimas, has a crater roughly one-third the diameter of the moon 
itself. Uranus suffered one or more collisions that were violent enough literally to 
knock the planet on its side. Today, as a result, its equatorial plane is tilted at al-
most a right angle to its orbital plane. We will see other examples in subsequent 
chapters.

CHECK YOUR UNDERSTANDING 7.4
Suppose that astronomers found a rocky, terrestrial planet beyond the orbit of 
Neptune. What is the most likely explanation for its origin? (a) It formed close to 
the Sun and migrated outward. (b) It formed in that location and was not dis-
turbed by migration. (c) It formed later in the Sun’s history than other planets.  
(d) It is a captured planet that formed around another star.

7.5 Planetary Systems Are Common

Beginning from the same fundamental observations about the shape of the Solar System,
theorists, planetary scientists, and stellar astronomers converge in the nebular theory
that stars and planets form together from a collapsing cloud of gas and dust.

Mathematicians suggest
the nebular hypothesis:

a collapsing rotating cloud
formed the Solar System.

Stellar astronomers test
the nebular hypothesis,

seeking evidence
for or against.

Planetary scientists test
the nebular hypothesis,

seeking evidence
for or against. 

Planetary scientists
study meteorites that

show the Solar System
bodies formed from

many smaller bodies.

Process of Science CONVERGING LINES OF INQUIRY
Astronomers asked: Why is the Solar System a disk,
with all planets orbiting in the same direction?

Stellar
astronomers
observe this
gas and dust
to be in the

shape of disks.

Stellar astronomers
�nd dust and gas

around young stars.
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hone this skill, we have provided Reading Astronomy News sections at the end 
of every chapter. These features include a news article with questions to help you 
make sense of how science is presented to you. It is important that you learn to be 
critical of the information you receive, and these features will help you do that.

While we know a lot about the universe, science is an ongoing process, and we 
continue to search for new answers. To give you a glimpse of what we don’t know, 
we provide an Unanswered Questions feature near the end of each chapter. 
Most of these questions represent topics that scientists are currently studying.

READING ASTRONOMY NEWS

questionsArticles

Articles questions

A system with five planets was observed by NASA’s Kepler space 
telescope.

earth-size Planet Found in the “Habitable Zone” of Another star

By Science@NASA 

Using NASA’s Kepler space telescope, astrono-
mers have discovered the first Earth-size 
planet orbiting in the “habitable zone” of 
another star (see Figure 7.23). The planet, 
named “Kepler-186f,” orbits an M dwarf, or 
red dwarf, a class of stars that makes up 70 
percent of the stars in the Milky Way Galaxy. 
The discovery of Kepler-186f confirms that 
planets the size of Earth exist in the habitable 
zone of stars other than our Sun.

The “habitable zone” is defined as the 
range of distances from a star where liquid 
water might pool on the surface of an orbiting 
planet. While planets have previously been 
found in the habitable zone, the previous finds 
are all at least 40 percent larger in size than 
Earth, and understanding their makeup is 
challenging. Kepler-186f is more reminiscent 
of Earth.

Kepler-186f orbits its parent M dwarf star 
once every 130 days and receives one-third the 
energy that Earth gets from the Sun, placing it 
nearer the outer edge of the habitable zone. On 
the surface of Kepler-186f, the brightness of its 
star at high noon is only as bright as our Sun 
appears to us about an hour before sunset.

“M dwarfs are the most numerous stars,” 
said Elisa Quintana, research scientist at the 
SETI Institute at NASA’s Ames Research Cen-
ter in Moffett Field, California, and lead author 
of the paper published today in the journal 
Science. “The first signs of other life in the gal-
axy may well come from planets orbiting an 
M dwarf.”

However, “being in the habitable zone does 
not mean we know this planet is habitable,” 
cautions Thomas Barclay, a research scientist 
at the Bay Area Environmental Research Insti-
tute at Ames, and coauthor of the paper. “The 
temperature on the planet is strongly depen-
dent on what kind of atmosphere the planet 
has. Kepler-186f can be thought of as an Earth-
cousin rather than an Earth-twin. It has many 
properties that resemble Earth.”

Kepler-186f resides in the Kepler-186 sys-
tem, about 500 light-years from Earth in the 
constellation Cygnus. The system is also home 
to four companion planets: Kepler-186b, 
Kepler-186c, Kepler-186d, and Kepler-186e, 
whiz around their sun every four, seven, 13, 
and 22 days, respectively, making them too hot 
for life as we know it. These four inner planets 
all measure less than 1.5 times the size of 
Earth.

Although the size of Kepler-186f is known, 
its mass and composition are not. Previous 
research, however, suggests that a planet the 
size of Kepler-186f is likely to be rocky.

“The discovery of Kepler-186f is a signifi-
cant step toward finding worlds like our planet 
Earth,” said Paul Hertz, NASA’s Astrophysics 
Division director at the agency’s headquarters 
in Washington.

The next steps in the search for distant life 
include looking for true Earth-twins—Earth-
size planets orbiting within the habitable zone 
of a Sun-like star—and measuring their chemi-
cal compositions. The Kepler space telescope, 
which simultaneously and continuously mea-
sured the brightness of more than 150,000 
stars, is NASA’s first mission capable of detect-
ing Earth-size planets around stars like our 
Sun.

Looking ahead, Hertz said, “future NASA 
missions, like the Transiting Exoplanet Survey 
Satellite and the James Webb Space Telescope, 
will discover the nearest rocky exoplanets and 
determine their composition and atmospheric 
conditions, continuing humankind’s quest to 
find truly Earth-like worlds.”

 1. This NASA press release was picked up by business and international news feeds. Why do you think coverage of this discovery was so 
widespread?

 2. The planet is closer to its star than Earth is to the Sun yet receives much less energy. What does that imply about the temperature of the star?
 3. Why is the mass of this planet not yet known? What method will be used to find its mass?
 4. How will astronomers estimate the planet’s composition?
 5. Why is this planet called a “cousin” of Earth?
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More than a thousand extrasolar planets have been detected 
from ground-based and space telescopes using the transit method. 
Current ground-based technology limits the sensitivity of the tran-
sit method to about 0.1 percent of a star’s brightness. Amateur as-
tronomers have confirmed the existence of several extrasolar 
planets by observing transits using charge-coupled device (CCD) 
cameras mounted on telescopes with apertures as small as 20 cen-
timeters (cm). Telescopes in space improve the sensitivity because 
smaller dips in brightness can be measured. The small French 
COROT telescope (27 cm) discovered 32 planets during its 6 years 
of operation (2007–2013). NASA’s 0.95-meter Kepler telescope has 
discovered many planets and has found thousands more candidates 
that are being investigated further. Figure 7.20 illustrates how 
multiplanet systems are identified with this method: if one planet is 
found, then observations of the variations in timing of the transit 
can indicate that there are other planets orbiting the same star.

 7.3 Working It Out Estimating the Radius of an Extrasolar Planet

The masses of extrasolar planets can often be estimated using 
 Kepler’s laws and the conservation of angular momentum. When 
planets are detected by the transit method, astronomers can esti-
mate the radius of an extrasolar planet. In this method, astronomers 
look for planets that eclipse their stars and observe how much the 
star’s light decreases during this eclipse (see Figure 7.19). In the So-
lar System when Venus or Mercury transits the Sun, a black circular 
disk is visible on the face of the circular Sun. During the transit, the 
amount of light from the transited star is reduced by the area of the 
circular disk of the planet divided by the area of the circular disk of 
the star:

 Percentage reduction in light 5
Area of disk of planet

Area of disk of star

5
pR2

planet

pR2
star

5
R2

planet

R2
star

Then, to solve for the radius of the planet, astronomers need an esti-
mate of the radius of the star and a measurement of the percentage 
reduction in light during the transit. The radius of a star is estimated 
from the surface temperature and the luminosity of the star.

Let’s consider an example. Kepler-11 is a system of at least six plan-
ets that transit a star. The radius of the star, Rstar, is estimated to be  
1.1 times the radius of the Sun, or 1.1 3 (7.0 3 105 km) 5 7.7 3 105 km. 
The light from planet Kepler-11c is observed to decrease by 0.077 per-
cent, or 0.00077 (see Figure 7.19). What is Kepler-11c’s size?

 0.00077 5
R2

Kepler-11c

R2
star

5
R2

Kepler-11c

17.7 3 105
 km22

 R2
Kepler-11c 5 4.5 3 108

 km2

 RKepler-11c 5 2.1 3 104
 km

Dividing Kepler-11c’s radius by the radius of Earth (6,400 km) shows 
that the planet Kepler-11c has a radius of 3.3 REarth.

Figure 7.20  Multiple planets can be detected by multiple transits with 
different brightness changes. The arrows point to the changes in the 
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formation developed from the work of both planetary 
and stellar scientists. Planets are a common by-product of 
star formation, and many stars are surrounded by planetary 
systems. Gravity pulls clumps of gas and dust together, caus-
ing them to shrink and heat up. Angular momentum must be 
conserved, leading to both a spinning central star and an 
accretion disk that rotates and revolves in the same direc-
tion as the central star. Solar System meteorites show that 
larger objects build up from smaller objects.

LG 2 Discuss the role of gravity and angular momentum in 
explaining why planets orbit the Sun in a plane and why 
they revolve in the same direction that the Sun rotates. 
As particles orbit the forming star, the cloud of dust and gas 
flattens into a plane. Conservation of angular momentum 
determines both the speed and the direction of the revolution 
of the objects in the forming system. Dust grains in the proto-
planetary disk first stick together because of collisions and 
static electricity. As these objects grow, they eventually have 
enough mass to attract other objects gravitationally. Once 
this occurs, they begin emptying the space around them. Col-
lisions of planetesimals lead to the formation of planets.

planets and other objects in our Solar System. In the cur-
rent model of the formation of the Solar System, solid ter-
restrial planets formed in the inner disk, where temperatures 
were high, and giant gaseous planets formed in the outer 
disk, where temperatures were low. Dwarf planets such as 
Pluto formed in the asteroid belt and in the region beyond 
the orbit of Neptune. Asteroids and comet nuclei remain to-
day as leftover debris.

LG 5 List how astronomers find planets around other stars, 
and explain how we know that planetary systems 
around other stars are common. Astronomers find plan-
ets around other stars using a variety of methods: the radial 
velocity method, the transit method, microlensing, astrom-
etry, and direct imaging. As technology has improved, the 
number and variety of known extrasolar planets has in-
creased dramatically, with thousands of planets and planet 
candidates discovered orbiting other stars near the Sun 
within the Milky Way Galaxy in just the past few years.

? UNANSWERED QUESTIONS

•	 How typical is the Solar System? Only within the past few 
years have astronomers found other systems containing four 
or more planets, and so far the observed distributions of 
large and small planets in these multiplanet systems have 
looked different from those of the Solar System. Computer 
simulations of planetary system formation suggest that a 
system with an orbital stability and a planetary distribution 
like those of the Solar System may develop only rarely. Im-
proved supercomputers can run more complex simulations, 
which can be compared with the observations to understand 
better how solar systems are configured.

•	 How Earth-like must a planet be before scientists declare it 
to be “another Earth”? An editorial in the science journal 
Nature cautioned that scientists should define “Earth-like” 
in advance—before multiple discoveries of planets “similar” 
to Earth are announced and a media frenzy ensues. Must a 
planet be of similar size and mass, be located in the habitable 
zone, and have spectroscopic evidence of liquid water before 
we call it “Earth 2.0”?
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Each chapter concludes with an Origins section, which relates material or 
subjects found in the chapter to questions about the origin of the universe and the 
origin of life in the universe and on Earth. Astrobiologists have made much prog-
ress in recent years on understanding how conditions in the universe may have 
helped or hindered the origin of life, and in each Origins we explore an example 
from its chapter that relates to how the universe and life formed and evolved.

The language of science is mathematics, and it can be as challenging to learn as 
any other language. The choice to use mathematics as the language of science is 
not arbitrary; nature “speaks” math. To learn about nature, you will need to speak 
its language. We don’t want the language of math to obscure the concepts, so we 
have placed this book’s mathematics in Working It Out boxes to make it clear 
when we are beginning and ending a mathematical argument, so that you can 
spend time with the concepts in the chapter text and then revisit the mathemat-
ics of the concept to study the formal language of the argument. You will learn 
to work with data and identify when data aren’t quite right. We want you to be 
comfortable reading, hearing, and speaking the language of science, and we will 
provide you with tools to make it easier.

227Origins: The Death of the Dinosaurs

When large impacts happen on Earth, 
they can have far-reaching conse-
quences for Earth’s climate and for ter-
restrial life. One of the biggest and 
most significant impacts happened at 
the end of the Cretaceous Period, 
which lasted from 146 million years 
ago to 65 million years ago. At the end 
of the Cretaceous Period, more than  
50 percent of all living species, includ-
ing the dinosaurs, became extinct. This 
mass extinction is marked in Earth’s 
fossil record by the Cretaceous-Tertiary 
boundary, or K-T boundary (the K comes 
from Kreide, German for “Cretaceous”). 
Fossils of dinosaurs and other now-
extinct life-forms are found in older 
layers below the K-T boundary. Fossils 
in the newer rocks above the K-T 
boundary lack more than half of all 
previous species but contain a record  
of many other newly evolving species. 
Big winners in the new order were  
the mammals—distant ancestors of 
humans—that moved into ecological 
niches vacated by extinct species.

How do scientists know that an im-
pact was involved? The K-T boundary 
is marked in the fossil record in many 
areas by a layer of clay. Studies at more 
than 100 locations around the world 
have found that this layer contains 
large amounts of the element iridium, 
as well as traces of soot. Iridium is very 
rare in Earth’s crust but is common in 
meteorites. The soot at the K-T bound-
ary possibly indicates that widespread 
fires burned the world over. The thick-
ness of the layer of clay at the K-T 
boundary and the concentration of 
iridium increases toward what is today 
the Yucatán Peninsula in Mexico. Al-
though the original crater has largely 
been erased by erosion, geophysical 

surveys and rocks from drill holes in 
this area show a deeply deformed sub-
surface rock structure, similar to that 
seen at known impact sites. These re-
sults provide compelling evidence that 
65 million years ago, an asteroid about 
10 km in diameter struck the area, 
throwing great clouds of red-hot dust 
and other debris into the atmosphere 
(Figure 8.30) and possibly igniting a 
worldwide conflagration. The energy 
of the impact is estimated to have been 
more than that released by 5 billion 
nuclear bombs.

An impact of this energy clearly 
would have had a devastating effect on 
terrestrial life. In addition to the pos-
sible firestorm ignited by the impact, 
computer models suggest there would 
have been earthquakes and tsunamis. 
Dust from the collision and soot from 
the firestorms thrown into Earth’s up-
per atmosphere would have remained 
there for years, blocking out sunlight 
and plunging Earth into decades of a 

cold and dark “impact winter.” Recent 
measurements of ancient microbes in 
ocean sediments suggest that Earth 
may have cooled by 7°C. The fire-
storms, temperature changes, and de-
creased food supplies could have led to 
a mass starvation that would have been 
especially hard on large animals such 
as the dinosaurs.

Not all paleontologists believe 
that this mass extinction was the re-
sult of an impact; some think volcanic 
activity was important as well. How-
ever, the evidence is compelling that  
a great impact did occur at the end  
of the  Cretaceous Period. Life on our 
planet has had its course altered by 
sudden and cataclysmic events when 
asteroids and comets have slammed 
into Earth. It seems very possible 
that we owe our existence to the  
luck of our  remote ancestors—small 
rodent-like mammals—that could live 
amid the destruction after such an im-
pact 65 million years ago.

Origins
The Death of the Dinosaurs

Figure 8.30  This artist’s rendition depicts an asteroid or comet, perhaps 10 km 
across, striking Earth 65 million years ago in what is now the Yucatán Peninsula in 
Mexico. The lasting effects of the impact might have killed off most forms of 
terrestrial life, including the dinosaurs.
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At the end of each chapter, we have pro-
vided several types of questions, problems, 
and activities for you to practice your skills. 
The Test Your Understanding questions focus 
on more detailed facts and concepts from the 
chapter. Thinking about the Concepts ques-
tions ask you to synthesize information and 
explain the “how” or “why” of a situation. 
Applying the Concepts problems give you a 
chance to practice the quantitative skills you 
learned in the chapter and to work through a 
situation mathematically. The Using the Web 
questions and Explorations represent other 
opportunities to “learn by doing.” Using the 
Web sends you to websites of space missions, observatories, experiments, or ar-
chives to access recent observations, results, or press releases. Other sites are for 
“citizen science” projects in which you can contribute to the analysis of new data.

Explorations show you how to use the concepts and skills you learned in an 
interactive way. Most of the book’s Explorations ask you to use animations and 
simulations on the Student Site, while the others are hands-on, paper-and-pencil 
activities that use everyday objects such as ice cubes or balloons.

The resources outside of the book (at the Student Site) can help you understand 
and visualize many of the physical concepts described in the book. AstroTours 
and Nebraska Simulations are represented by icons in the margins of the book. 
There is also a series of short Astronomy in Action videos that are represented 
by icons in the margins and available at the Student Site. These videos feature one 
of the authors (and several students) demonstrating physical concepts at work. 
Your instructor might assign these videos to you or you might choose to watch 
them on your own to create a better picture of each concept in your mind.

Astronomy gives you a sense of perspective that no other field of study offers. 
The universe is vast, fascinating, and beautiful, filled with a wealth of objects 
that, surprisingly, can be understood using only a handful of principles. By the 
end of this book, you will have gained a sense of your place in the universe.

Using the Web

the science goals? Have some planets been found?

 49. Citizen science projects:
a. Go to the “PlanetHunters” website at  

http://planethunters.org. PlanetHunters is part of the 
Zooniverse, a citizen science project that invites individu-
als to participate in a major science project using their own 
computers. To participate in this or any of the other Zooni-
verse projects mentioned in later chapters, you will need to 
sign up for an account. Read through the sections under 
“About,” including the FAQ. What are some of the advan-
tages to crowdsourcing Kepler data analysis? Back on the 
PlanetHunters home page, click on “Tutorial” and watch 
the “Introduction” and “Tutorial Video.” When you’re 
ready to try looking for planets, click on “Classify” and be-
gin. Save a copy of your stars for your homework.

b. Go to the “Disk Detective” website at http://www 
.diskdetective.org/, another Zooniverse project for which 
you will need to make an account as in part (a). In this proj-
ect, you will look at observations of young stars to see if 
there is evidence for a planetary disk. Under “Menu,” read 
“Science” and “About,” and then “Classify.” Work through 
an example, and then classify a few images. 

 50. Go to the “Super Planet Crash” Web page (http://www 
.stefanom.org/spc/ or http://apod.nasa.gov/apod/ap150112 
.html). Read “Help” to see the rules. First build a system like 
ours with four Earth-sized planets in the inner 2 AU—is this 
stable? What happens if you add in super-Earths or “ice gi-
ants”? Build up a few completely different planetary systems 
and see what happens. What types of situations cause insta-
bility in the inner 2 AU of these systems?

mass (2.33 MJup) are known. The density provides a clue about 
whether the object is gaseous or rocky.
a. What is the mass of this planet in kilograms?
b. What is the planet’s radius in meters?
c. What is the planet’s volume?
d. What is the planet’s density? How does this density com-

pare to the density of water (1,000 kg/m3)? Is the planet 
likely to be rocky or gaseous?

 46. Go to the “Extrasolar Planets Global Searches” Web page 
(http://exoplanet.eu/searches.php) of the Extrasolar Planets 
Encyclopedia. Click on one ongoing project  under “Ground” 
and one ongoing project under “Space.” What method is used 
to detect planets in each case? Has the selected project found 
any planets, and if so, what type are they? Now click on one of 
the future projects. When will the one you chose be ready to 
begin? What will be the method of detection?

 47. Using the exoplanet catalogs:
a. Go to the “Catalog” Web page (http://exoplanet.eu/catalog) 

of the Extrasolar Planets Encyclopedia and set to “All Plan-
ets detected.” Look for a star that has multiple planets. 
Make a graph showing the distances of the planets from 
that star, and note the masses and sizes of the planets. Put 
the Solar System planets on the same axis. How does this 
extrasolar planet system compare with the Solar System?

b. Go to the “Exoplanets Data Explorer” website (http:// 
exoplanets.org) and click on “Table.” This website lists 
planets that have detailed orbital data published in scientific 
journals, and it may have a smaller total count than the web-
site in part (a). Pick a planet that was discovered this year or 
last, as specified in the “First Reference” column. What is 
the planet’s minimum mass? What is its semimajor axis and 
the period of its orbit? What is the  eccentricity of its orbit? 
Click on the star name in the first column to get more 

 

If your instructor assigns homework in Smartwork5, access your 
assignments at digital.wwnorton.com/astro5.
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8 When is the star moving fastest: when the planet is close to it or 
when the planet is far away?

 

9 Explain how an astronomer would determine, from a radial ve-
locity graph of the star’s motion, whether the orbit of the planet was in 
a circular or elongated orbit.

 

 

10 Study the “Earth view” panel at the top of the window. Would 
this planet be a good candidate for a transit observation? Why or why 
not?

 

 

In the “System Orientation” panel, change the inclination to 0.0.

11 Now is Earth’s view of this system most nearly like the “side 
view” or most nearly like the “orbit view”?

 

12 How does the radial velocity of the star change as the planet 
orbits?

 

 

 

13 Click the box that says “show simulated measurements,” and 
change the “noise” to 1.0 m/s. The gray dots are simulated data, and 
the blue line is the theoretical curve. Use the slider bar to change the 
inclination. What happens to the radial velocity as the inclination in-
creases? (Hint: Pay attention to the vertical axis as you move the slid-
er, not just the blue line.)

 

 

 

14 What is the smallest inclination for which you would find the 
data convincing? That is, what is the smallest inclination for which the 
theoretical curve is in good agreement with the data?

 

 

 

Visit the Student Site at the Digital Landing Page, and open the Exo-
planet Radial Velocity Simulator in Chapter 7. This applet has a num-
ber of different panels that allow you to experiment with the variables 
that are important for measurement of radial velocities. First, in the 
window labeled “Visualization Controls,” check the box to show mul-
tiple views. Compare the views shown in panels 1–3 with the colored 
arrows in the last panel to see where an observer would stand to see 
the view shown. Start the animation (in the “Animation Controls” 
panel), and allow it to run while you watch the planet orbit its star 
from each of the views shown. Stop the animation, and in the “Pre-
sets” panel, select “Option A” and then click “set.”

1 Is Earth’s view of this system most nearly like the “side view” or 
most nearly like the “orbit view”?

 

2 Is the orbit of this planet circular or elongated?

 

3 Study the radial velocity graph in the upper right panel. The blue 
curve shows the radial velocity of the star over a full period. What is 
the maximum radial velocity of the star?

 

4 The horizontal axis of the graph shows the “phase,” or fraction of 
the period. A phase of 0.5 is halfway through a period. The vertical 
red line indicates the phase shown in views in the upper left panel. 
Start the animation to see how the red line sweeps across the graph as 
the planet orbits the star. The period of this planet is 365 days. How 
many days pass between the minimum radial velocity and the maxi-
mum radial velocity?

 

5 When the planet moves away from Earth, the star moves toward 
Earth. The sign of the radial velocity tells the direction of the  motion 
(toward or away). Is the radial velocity of the star positive or negative 
at this time in the orbit? If you could graph the radial velocity of the 
planet at this point in the orbit, would it be positive or negative?

 

In the “Presets” window, select “Option B” and then click “set.”

6 What has changed about the orbit of the planet as shown in the 
views in the upper left panel?

 

 

7 When is the planet moving fastest: when it is close to the star or 
when it is far from the star?

 

Exploring Extrasolar Planets
digital.wwnorton.com/astro5

EXPLORATION
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 Astronomy in Action

 AstroTour

 Nebraska Simulation

http://exoplanet.eu/searches.php
http://exoplanet.eu/catalog
http://exoplanets.org
http://exoplanets.org
http://www.digital.wwnorton.com/astro5
http://www.didital.wwnorton.com/astro5
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Dear Instructor
We wrote this book with a few overarching goals: to inspire students, to make 
the material interactive, and to create a useful and flexible tool that can support 
multiple learning styles.

As scientists and as teachers, we are passionate about the work we do. We 
hope to share that passion with students and inspire them to engage in science 
on their own. Through our own experience, familiarity with education research, 
and surveys of instructors, we have come to know a great deal about how students 
learn and what goals teachers have for their students. We have explicitly ad-
dressed many of these goals and learning styles in this book, sometimes in large, 
immediately visible ways such as the inclusion of features but also through less 
obvious efforts such as questions and problems that relate astronomical concepts 
to everyday situations or a fresh approach to organizing material.

For example, many teachers state that they would like their students to be-
come “educated scientific consumers” and “critical thinkers” or that their stu-
dents should “be able to read a news story about science and understand its sig-
nificance.” We have specifically addressed these goals in our Reading Astronomy 
News feature, which presents a news article and a series of questions that guide a 
student’s critical thinking about the article, the data presented, and the sources.

In nearly every chapter, we have Visual Analogy figures that compare astrono-
my concepts to everyday events or objects. Through these analogies, we strive to 
make the material more interesting, relevant, and memorable.

Education research shows that the most effective way to learn is by doing. 
Exploration activities at the end of each chapter are hands-on, asking students to 
take the concepts they’ve learned in the chapter and apply them as they interact 
with animations and simulations on the Student Site or work through pencil-
and-paper activities. Many of these Explorations incorporate everyday objects 
and can be used either in your classroom or as activities at home. The Using the 
Web problems direct students to “citizen science” projects, where they can con-
tribute to the analysis of new astronomical data. Other problems send students 
to websites of space missions, observatories, collaborative projects, and catalogs 
to access the most current observations, results, and news releases. These Web 
problems can be used for homework, lab exercises, recitations, or “writing across 
the curriculum” projects.

We also believe students should be exposed to the more formal language of 
science—mathematics. We have placed the math in Working It Out boxes, so it 
does not interrupt the flow of the text or get in the way of students’ understanding 
of conceptual material. But we’ve gone further by beginning with fundamental 
ideas in early Working It Out boxes and slowly building in complexity through 
the book. We’ve also worked to remove some of the stumbling blocks that affect 
student confidence by providing calculator hints, references to earlier Working It 
Out boxes, and detailed, fully worked examples. Many chapters include problems 
on reading and interpreting graphs. Appendix 1, “Mathematical Tools,” has also 
been reorganized and expanded.

Discussion of basic physics is contained in Part I to accommodate courses that 
use the Solar System or Stars and Galaxies volumes. A “just-in-time” approach to 
introducing the physics is still possible by bringing in material from Chapters 2–6 
as needed. For example, the sections on tidal forces in Chapter 4 can be taught 
along with the moons of the Solar System in Part II, or with mass transfer in 
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binary stars in Part III, or with galaxy interactions in Part IV. Spectral lines in 
Chapter 5 can be taught with planetary atmospheres in Part II or with stellar 
spectral types in Part III, and so on.

In our overall organization, we have made several efforts to encourage stu-
dents to engage with the material and build confidence in their scientific skills as 
they proceed through the book. For planets, stars and galaxies, we have organized 
the material to cover the general case first and then delve into more details with 
specific examples. Thus, you will find “planetary systems” before our own Solar 
System, “stars” before the Sun, and “galaxies” before the Milky Way. This allows 
us to avoid frustrating students by making assumptions about what they know 
about stars or galaxies or forward-referencing to basic definitions and overarch-
ing concepts. This organization also implicitly helps students understand their 
place in the universe: our galaxy and our star are each one of many. They are spe-
cific examples of a physical universe in which the same laws apply everywhere. 
Planets have been organized comparatively to emphasize that science is a process 
of studying individual examples that lead to collective conclusions. All of these 
organizational choices were made with the student perspective in mind and a 
clear sense of the logical hierarchy of the material.

Even our layout has been designed to maximize student engagement—one 
wide text column is interrupted as seldom as possible. Material from the earlier 
edition’s Connections boxes has been streamlined and incorporated into the text.

We have continued to respond to commentary from you, our colleagues. We 
have reorganized the material in the first half of Part IV to reflect user feedback. 
We begin in Chapter 19 by introducing galaxies as a whole and our measure-
ments of them, including recession velocities. Then we address the Milky Way 
in Chapter 20—a specific example of a galaxy that we can discuss in detail. This 
follows the repeating motif of moving from the general to the specific that ex-
ists throughout the text and gives students a basic grounding in the concepts of 
spiral galaxies, supermassive black holes, and dark matter before they need to 
apply those concepts to the specific example of our own galaxy. Chapter 21, “The 
Expanding Universe,” covers the cosmological principle, the Hubble expansion, 
and the observational evidence for the Big Bang.

We revised each chapter, streamlining some topics, and updating the sci-
ence to reflect the progress in the field. When appropriate, we have updated the 
Origins sections, which often illustrate how astrobiologists and other scientists 
approach the study of a scientific question from the chapter related to the origin 
of the universe and of life. We have enhanced the material on exoplanets and 
incorporated material about exoplanets into other chapters when appropriate. 
We include new images of Mars, Ceres, Comet 67P/Churyumov-Gerasimenko, 
and Pluto. We note the discovery of our new home supercluster, Laniakea. We’ve 
updated the cosmology sections on the highest-redshift objects and the first 
stars and galaxies.

Many professors find themselves under pressure from accrediting bodies or 
internal assessment offices to assess their courses in terms of learning goals. To 
help you with this, we’ve revised each chapter’s Learning Goals and organized 
the end-of-chapter Summary to correspond to the chapter’s Learning Goals. In 
Smartwork5, questions and problems are tagged and can be sorted by Learning 
Goal. Smartwork5 contains more than 2,000 questions and problems that are tied 
directly to this text, including the Check Your Understanding questions and ver-
sions of the Reading Astronomy News and Exploration questions. Any of these 
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could be used as a reading quiz to be completed before class or as homework. 
Every question in Smartwork5 has hints and answer-specific feedback so that 
students are coached to work toward the correct answer. An instructor can easily 
modify any of the provided questions, answers, and feedback or can create his or 
her own questions.

We’ve also created a series of 23 videos explaining and demonstrating concepts 
from the text, accompanied by questions integrated into Smartwork5. You might 
assign these videos prior to lecture—either as part of a flipped modality or as a 
“reading quiz.” In either case, you can use the diagnostic feedback from the ques-
tions in Smartwork5 to tailor your in-class discussions. Or you might show them 
in class, to stimulate discussion. Or you might simply use them as a jumping-off 
point—to get ideas for activities to do with your own students.

We continue to look for better ways to engage students, so please let us know 
how these features work for your students.

Ancillaries for Students
digital.wwnorton.com/astro5
Smartwork5

Steven Desch, Guilford Technical Community College
Violet Mager, Penn State Wilkes-Barre
Todd Young, Wayne State College

More than 2,000 questions support 21st Century Astronomy, Fifth Edition—all 
with answer-specific feedback, hints, and ebook links. Questions include Check 
Your Understanding, Test Your Understanding, Reading Astronomy News, and 
versions of the Explorations (based on AstroTours and the University of Ne-
braska simulations). New ranking, sorting, and labeling tasks are designed to get 
students thinking visually. Also new to this edition, Astronomy in Action video 
questions focus on getting students to come to class prepared and on overcoming 
common misconceptions. Rounding out the Smartwork5 course, Process of Sci-
ence Guided Inquiry Assignments help students apply the scientific method to 
important questions in astronomy, challenging them to think like scientists.

Student Site
W. W. Norton’s free and open student website features the following:

•	 Thirty AstroTour animations. These animations, some of which are interac-
tive, use art from the text to help students visualize important physical and 
astronomical concepts. All are now tablet-compatible.

•	 Nebraska Simulations (sometimes called applets or NAAPs, for Nebraska As-
tronomy Applet Programs). These simulations allow students to manipulate 
variables and see how physical systems work.

•	 Twenty-three Astronomy in Action videos that feature author Stacy Palen 
demonstrating the most important concepts in a visual, easy to understand, 
and memorable way.

http://www.digital.wwnorton.com/astro5
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Learning Astronomy by Doing Astronomy:  
Collaborative Lecture Activities

Stacy Palen, Weber State University
Ana Larson, University of Washington

Students learn best by doing. Devising, writing, testing, and revising suitable in-
class activities that use real astronomical data, illuminate astronomical concepts, 
and pose probing questions that ask students to confront misconceptions can be 
challenging and time consuming. In this workbook, the authors draw on their 
experience teaching thousands of students in many different types of courses 
(large in-class, small in-class, hybrid, online, flipped, and so forth) to bring 30 
field-tested activities that can be used in any classroom today. The activities have 
been designed to require no special software, materials, or equipment and to take 
no more than 50 minutes to do.

Starry night Planetarium Software (College 
Version) and Workbook

Steven Desch, Guilford Technical Community College
Michael Marks, Bristol Community College

Starry Night is a realistic, user-friendly planetarium simulation program de-
signed to allow students in urban areas to perform observational activities on 
a computer screen. Norton’s unique accompanying workbook offers observation 
assignments that guide students’ virtual explorations and help them apply what 
they’ve learned from the text reading assignments.

For Instructors
Instructor’s manual

Ben Sugerman, Goucher College

This resource includes brief chapter overviews; suggested discussion points; 
notes on the AstroTour animations, Nebraska Simulations, and Astronomy in 
Action videos contained on the Instructor Resource USB Drive (described later); 
and worked solutions to all end-of-chapter questions and problems, including an-
swers to all Reading Astronomy News and Check Your Understanding questions 
found in the textbook.

PowerPoint Lecture Slides
Jack Hughes, Rutgers University
Jack Brockway, Radford University

These ready-made lecture slides integrate selected textbook art, all Check Your 
Understanding and Working It Out questions from the text, and links to the As-
troTour animations. Designed with accompanying lecture outlines, these lecture 
slides are fully editable and are available in Microsoft PowerPoint format.
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Test Bank
Joshua Thomas, Clarkson University
Parviz Ghavamian, Towson University
Adriana Durbala, University of Wisconsin–Stevens Point

The Test Bank has been revised using Bloom’s Taxonomy and provides a quality 
bank of more than 2,400 multiple-choice and short-answer questions. Each chap-
ter of the Test Bank consists of six question levels classified according to Bloom’s 
Taxonomy:

Remembering
Understanding
Applying
Analyzing
Evaluating
Creating

Questions are further classified by section and difficulty, making it easy to 
construct tests and quizzes that are meaningful and diagnostic. The Test Bank 
assesses a common set of Learning Objectives consistent with the textbook and 
Smartwork5 online homework.

norton Instructor’s resource Site
This Web resource contains the following resources to download:

•	 Test Bank, available in ExamView, Word RTF, and PDF formats

•	 Instructor’s Manual in PDF format

•	 Lecture PowerPoint slides with lecture notes

•	 All art and tables in JPEG and PPT formats

•	 Starry Night College, W. W. Norton Edition, Instructor’s Manual

•	 AstroTour animations

•	 Selected Nebraska Simulations

•	 Coursepacks, available in BlackBoard, Angel, Desire2Learn, and Moodle formats

Coursepacks
Norton’s Coursepacks, available for use in various Learning Management Systems 
(LMSs), feature all Test Bank questions, links to the AstroTours and Nebraska 
Simulations, worksheets based on the Explorations and Astronomy in Action 
videos, and automatically graded versions of the end-of-chapter Test Your Un-
derstanding multiple-choice questions. Coursepacks are available in BlackBoard, 
Canvas, Desire2Learn, and Moodle formats.

Instructor resource uSB Drive
This USB drive contains all instructor resources found on the Instructor’s Re-
source Site, including offline versions of the Astronomy in Action videos, Astro-
Tour animations, and Nebraska Simulations.
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The first view of Earth seen from deep 

space. In December 1968, Apollo 8 

astronauts photographed Earth above 

the Moon’s limb.

1

T his is a fascinating time to be studying this most ancient of the sciences. 
Loosely translated, the word astronomy means “patterns among the stars.” 

But modern astronomy—the astronomy we will talk about in this book—is about 
far more than looking at the sky and cataloging the visible stars. The contents of 
the universe, the origin and fate of the universe, and the nature of space and time 
have become the subjects of rigorous scientific investigation. Humans have long 
speculated about our origins. How and when did the Sun, Earth, and Moon form? 
Are other galaxies, stars, planets, and moons similar to our own? The answers 
that scientists are finding to these questions are changing not only our view of 
the cosmos but also our view of ourselves.

LEARNING GOALS

In this chapter, we will begin the study of astronomy by exploring our 
place in the universe and the methods of science. By the conclusion of 
this chapter, you should be able to:

LG 1 Describe the size and age of the universe and Earth’s place in it.

LG 2 Use the scientific method to study the universe.

LG 3 Demonstrate how scientists use mathematics, including 
graphs, to find patterns in nature.

Thinking Like an 
Astronomer



3

What is your 
cosmic 
address?
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1.1 Earth Occupies a Small Place in the 
Universe

Astronomers contemplate our place in the universe by studying Earth’s position 
in space and time. Locating Earth in the larger universe is the first step in learn-
ing the science of astronomy. In this section, you will get a feel for the neighbor-
hood in which Earth is located. You will also begin to explore the scale of the 
universe in space and time.

Our Place in the Universe
Most people receive their postal mail at an address—building number, street, city, 
state, and country. We can expand our view to include the enormously vast uni-
verse we live in. What is our “cosmic address”? We reside on a planet called Earth, 
which is orbiting under the influence of gravity around a star called the Sun. The 
Sun is a typical, middle-aged star and seems extraordinary only because of its 
importance to us within our own Solar System. Our Solar System consists of 
eight planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Nep-
tune. It also contains many smaller bodies, such as dwarf planets, asteroids, and 
comets. All of these objects are bound to the Sun by gravity.

The Sun is located about halfway out from the center of the Milky Way Gal-
axy, a flattened collection of stars, gas, and dust. Our Sun is just one among sev-
eral hundred billion stars scattered throughout our galaxy, and many of these 
stars are themselves surrounded by planets.

The Milky Way is a member of a collection of a few dozen galaxies called the 
Local Group. Most galaxies in this group are much smaller than the Milky Way. 
Looking farther outward, the Local Group is part of a vastly larger collection of 
thousands of galaxies—a supercluster—called the Laniakea Supercluster. There 
are millions of superclusters in the observable universe.

We can now define our cosmic address—Earth, Solar System, Milky Way Gal-
axy, Local Group, Laniakea Supercluster—as illustrated in Figure 1.1. Yet even 
this address is not complete, as the Laniakea Supercluster encompasses only the 
local universe. The part of the universe that we can see—the observable universe—
extends to 50 times the size of Laniakea in every direction. Within this volume, 
there are about as many galaxies as there are stars in the Milky Way—several 
hundred billion. The universe is not only much larger than the local universe but 
also contains much more than the observed planets, stars, and galaxies. Up to 95 
percent of the mass of the universe is made up of matter that does not interact 
with light, known as dark matter, and a form of energy that permeates all of space, 
known as dark energy. Neither of these is well understood, and they are among 
the many exciting areas of research in astronomy.

The Scale of the Universe
As you saw in Figure 1.1, the size of the universe completely dwarfs our human 
experience. We can start by comparing astronomical sizes and distances to some-
thing more familiar. For example, the diameter of our Moon is about equal to the 
distance between the offices of the first two authors of this book, in New York, 
New York, and Ogden, Utah (Figure 1.2a). The distance from Earth to the Moon 
is about 100 times the Moon’s diameter, and the planet Saturn with its majestic 

Sun

Milky Way Galaxy

Local Group

Laniakea Supercluster

Earth

Solar System

Figure 1.1  Our cosmic address is Earth, Solar System, 
Milky Way Galaxy, Local Group, Laniakea Supercluster. 
We live on Earth, a planet orbiting the Sun in our Solar 
System, which is a star in the Milky Way Galaxy. The 
Milky Way is a large galaxy within the Local Group of 
galaxies, which in turn is located in the Laniakea 
Supercluster.
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rings would fill much of that distance (Figure 1.2b). The distance 
from Earth to the Sun is about 400 times the Earth–Moon distance, 
and the distance to the planet Neptune is about 30 times the Earth–
Sun distance.

But as we move out from the Solar System to the stars, the dis-
tances become so enormous that they are difficult to comprehend. 
The nearest star is about 9,000 times farther away from the Sun 
than the Sun’s distance to the planet Neptune. The diameter of our 
Milky Way Galaxy is 30,000 times the distance to that nearest star. 
The Andromeda Galaxy, the nearest similar large galaxy to the 
Milky Way, is about 600,000 times farther away than that nearest 
star. The diameter of the Local Group of galaxies is about 4 times 
the distance to Andromeda, and the diameter of the recently identi-
fied Laniakea Supercluster, which includes the Local Group and 
many other galaxy groups, is 50 times larger than the Local Group. 
As noted earlier, this is just one of millions of superclusters in the 
observable universe.

To get a better sense of these distances, imagine a model in which 
the objects and distances in the universe are 1 billion times smaller 
than they really are. In this model, Earth is about the size of a marble 
or a peanut M&M (about 1.3 centimeters, or half an inch), the Moon 
is 38 centimeters (cm) away, and the Sun is 150 meters away. Nep-
tune is 4.5 kilometers (km) from the Sun, and the nearest star to the 
Sun is about 40,000 km away (or about the length of the circumfer-
ence of the real Earth). The model Milky Way Galaxy would fill the 
Solar System nearly to the orbit of Saturn. The distance between the 
model Milky Way and Andromeda galaxies would fill the Solar Sys-
tem 20 times farther, out beyond humanity’s most distant space 
probe. The model Laniakea Supercluster would fill the Solar System 
and go about one-eighth of the way to the nearest star.

When thinking about the distances in the universe, it can be help-
ful to discuss the time it takes to travel to various places. If someone 
asks you how far it is to the nearest city, you might say 100 km or you 
might say 1 hour. In either case, you will have given that person an 
idea of how far the city is. In astronomy, the speed of a car on the 
highway is far too slow to be useful. Instead, we use the fastest speed 
in the universe—the speed of light. Light travels at 300,000 kilo-
meters per second (km/s). Light can circle Earth, a distance of 
40,000 km, in just under 1

7 of a second. So we say that the circumfer-
ence of Earth is 17 of a light-second. Even relatively small distances in 
astronomy are so vast that they are measured in units of light-years 
(ly): the distance light travels in 1 year, about 9.5 trillion km, or 6 trillion miles.

Because light takes time to reach us, we see astronomical objects as they 
were in the past: the extent back in time depends on the object’s distance from 
us. Because light takes 11

4 seconds to reach us from the Moon, we see the Moon 
as it was 11

4 seconds ago. Because light takes 81
3 minutes to reach us from the Sun, 

we see the Sun as it was 81
3 minutes ago. We see the nearest star as it was more 

than 4 years ago and objects across the Milky Way as they were tens of thou-
sands of years ago. The light from the Virgo Cluster of galaxies has been travel-
ing 50 million years to reach us. The light from the most distant observable 
objects has been traveling for almost the age of the universe—nearly 13.8 billion 

384,400 km

280,000 km

Ogden,
Utah

(a)

(b)

New York,
New York

Figure 1.2  (a) The diameter of the Moon is about the same as the 
distance between New York, New York, and Ogden, Utah. (b) The size 
of Saturn, including the rings, is about 70 percent of the distance 
between Earth and the Moon.
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Figure 1.3  Thinking 
about the time it 
takes for light to 
travel between 
objects helps us 
comprehend the vast 
distances in the 
universe. (Figures 
such as this one, with 
“Visual Analogy” tags, 
are images that make 
analogies between 
astronomical 
phenomena and 
everyday objects 
more concrete.)

1.25 seconds
Earth

Moon

8.3 minutes
EarthSun

Earth’s circumference
1/7 second

4.2 years

2.5 million years

100,000 years

Proxima Centauri,
the closest star

to the Sun

Sun

Milky Way Galaxy

The Sun

Milky Way
Galaxy

Radius of the observable universe

Andromeda
Galaxy

13.8 billion years

8.3 hours

Neptune

Sun

Moving outward through the
universe at the speed of light,
going around Earth is like the
time between rapid drum beats.

The Moon is a little more
than a second away.

The Sun’s distance
is like a quick meal.

The diameter of Neptune’s
orbit is like a night’s sleep.

The distance to the 
nearest star is like the time
between U.S. presidential
elections.

The diameter of the galaxy is 
like the time since the woolly 
mammoth walked the Earth.

The distance between
galaxies is like the time since
Homo erectus first appeared.

The size of the observable universe 
is like three times the age of Earth.

VisuaL anaLoGy
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years. Figure 1.3 begins with Earth and progresses outward to the observable 
universe.

The vast distances from Earth to other objects in the universe tell us that we 
occupy a very small part of the space in the universe and a very small part of time. 
Earth and the Solar System are only about one-third the age of the universe. Ani-
mals have existed on Earth for even less time. Imagine the age of the universe and 
the important events in it as if they took place within a single day, as illustrated in 
Figure 1.4. In this timeline, the Big Bang begins the cosmic day at midnight, and 
the original light chemical elements are created within the first 2 seconds. The 
first stars and galaxies appear within the first 10 minutes. Our Solar System 
formed from recycled gas and dust left over from previous generations of stars, at 
about 4 p.m. on this cosmic clock. The first bacterial life appears on Earth at  
5:20 p.m., the first animals at 11:20 p.m., and modern humans at 11:59:59.8 p.m.—
with only a fifth of a second to go in this cosmic day. We humans appeared quite 
recently in the history of the universe.

CHECK YOUR UNDERSTANDING 1.1
Rank the following in order of size: (a) a light-minute, (b) a light-year, (c) a light-
hour, (d) the radius of Earth, (e) the distance from Earth to the Sun, (f) the radius 
of the Solar System.

1.2 Science Is a Way of Viewing the 
Universe

Humans have long paid attention to the sky and the stars and developed the dy-
namic science of astronomy. New discoveries happen frequently, and ideas about 
the universe are evolving rapidly. To view the universe through the eyes of an 
astronomer, you will need to understand how science itself works. Throughout 
this book, we will emphasize not only scientific discoveries but also the process of 
science. In this section, we will examine the scientific method.

The Scientific Method
The scientific method is a systematic way of testing new ideas or explanations. 
Often, scientists begin with a fact—an observation or a measurement. For exam-
ple, you might observe that the weather changes in a predictable way each year 
and wonder why that happens. You then create a hypothesis, a testable explana-
tion of the observation: “I think that it is cold in the winter and warm in the sum-
mer because Earth is closer to the Sun in the summer.” You and your colleagues 
come up with a test: if it is cold in the winter and warm in the summer because 
Earth is closer to the Sun in the summer, then it will be cold in the winter every-
where on the planet—Australia should have winter at the same time of year as the 
United States. This test can be used to check your hypothesis. You travel from the 
United States to Australia in January and find that it is summer in Australia. Your 
hypothesis has just been proved incorrect, so we say that it has been falsified. 
This is different than the meaning in common usage, where one might think of 
“falsified” evidence as having been manipulated to misrepresent the truth. There 
are two important elements of your test that all scientific tests share. Your obser-
vation is reproducible: anyone who goes to Australia will find the same result. 

The first hydrogen and 
helium, and a few other nuclei 
have formed and cooled 
enough to combine with 
electrons to produce neutral 
atoms.

In a single cosmic minute, the 
Solar System forms out of a 
giant cloud of gas and dust.

The first primitive life appears 
on Earth.

The first multicellular 
organisms appear on dry 
land.

The first animals make the 
transition from ocean to dry 
land.

A large asteroid crashes on 
Earth. Over half of all species 
vanish. Mammals begin to 
flourish.

Homo sapiens first appears.

Stars appear and then 
galaxies. The Milky Way 
Galaxy becomes visible as 
star formation begins.

A Mars-sized planetismal 
crashes into Earth, forming 
the Moon.

More complex single-celled 
organisms appear.

Multicellular organisms 
become abundant.

The first dinosaurs appear.

The earliest human 
ancestors appear on the 
plains of Africa.

Modern Humans

The universe is a hot bath of 
photons and elementary 
particles.

Figure 1.4  This cosmic timeline presents the history of 
the universe as a 24-hour day.



chapter 1 Thinking Like an Astronomer8

Your result is also repeatable: if you conducted a similar test next year or the year 
after, you would get the same result. Because you have falsified your hypothesis, 
you must revise or completely change it to be consistent with the new data.

Any idea that is not testable—that is not falsifiable—must be accepted or rejected 
based on intuition alone, so it is not a scientific idea. A falsifiable hypothesis or idea 
does not have to be testable using current technology, but we must be able to imag-
ine an experiment or observation that could prove the idea wrong if we could carry 
it out. As continuing tests support a hypothesis by failing to disprove it, scientists 
come to accept the hypothesis as a theory. A theory is a well-developed idea or 
group of ideas that is tied to known physical laws and makes testable predictions. 
As in the previous paragraph, the scientific meaning is different than the meaning 
in common usage. In everyday language, theory may mean a guess: “Do you have a 
theory about who did it?” In everyday language, a theory can be something we don’t 
take too seriously. “After all,” people say, “it’s only a theory.”

In stark contrast, scientists use the word theory to mean a carefully constructed 
proposition that takes into account every piece of relevant data as well as our en-
tire understanding of how the world works. A theory has been used to make test-
able predictions, and all of those predictions have come true. Every attempt to 
prove it false has failed. A classic example is Einstein’s theory of relativity, which 
we cover in some depth in Chapter 18. For more than a century, scientists have 
tested the predictions of the theory of relativity and have not been able to falsify 
it. Even after 100 years of verification, if a prediction of the theory of relativity 
failed tomorrow, the theory would require revision or replacement. As Einstein 
himself noted, a theory that fails only one test is proved false. In this sense, all 
scientific knowledge is subject to challenge.

In the loosely defined hierarchy of scientific knowledge, an idea is a notion 
about how something might be. Moving up the hierarchy we come to a fact, which 
is an observation or measurement. For example, the measured value of Earth’s 
radius is a fact. A hypothesis is an idea that leads to testable predictions. A hypoth-
esis may be the forerunner of a scientific theory, or it may be based on an existing 
theory, or both. At the top of the hierarchy is a theory: an idea that has been exam-
ined carefully, is consistent with all existing theoretical and observational knowl-
edge, and makes testable predictions. Ultimately, the success of the predictions is 
the deciding factor between competing theories. A scientific law is a series of ob-
servations that leads to an ability to make predictions but has no underlying ex-
planation of why the phenomenon occurs. So we might have a “law of daytime” 
that says the Sun rises and sets once each day. We could have a “theory of day-
time” that says the Sun rises and sets once each day because Earth spins on its 
axis. Scientists themselves can be sloppy about the way they use these words, and 
you will sometimes see them used differently than we have defined them here.

As shown in the Process of Science Figure, the scientific method follows a 
specific sequence. Scientists begin with an observation or idea, followed by careful 
analysis, followed by a hypothesis, followed by prediction, followed by further 
observations or experiments to test the prediction. A hypothesis may lead to a 
scientific theory, or it may be based on an existing theory, or both. Ultimately, the 
basis for deciding among competing theories is the success of their predictions. 
Scientists can use theories to take their knowledge a step further by building theo-
retical models. A theoretical model is a detailed description of the properties of a 
particular object or system in terms of known physical laws or theories, which are 
used to connect the theoretical model to the behavior of a complex system.

The construction of new theories is often guided by scientific principles, 
which are general ideas or a sense about the universe that will guide the 

 Nebraska Simulation: Lookback Time 
Simulator



Start with an
observation or idea.

Suggest a
hypothesis.

Make a
prediction.

Perform a test,
experiment, or

additional
observation and
analyze the data.

If the test provides
evidence to support

the hypothesis, make
additional predictions

and test them.

If the test or observation
does not support the

hypothesis, make more
observations, revise

the hypothesis, or
choose a new one.

An idea or observation leads to a falsifiable hypothesis that is either accepted as a tested 
theory or rejected on the basis of observational or experimental tests of its predictions. 
The blue loop goes on indefinitely as scientists continue to test the theory.

Process of Science THE SCIENTIFIC METHOD
The scientific method is a formal procedure used to
test the validity of scientific hypotheses and theories.




